
IP fabric rollout

Costas Drogos 
<costasd@kentik.com>



Note
- I’m not a full-time network engineer

- Will mostly use Junos terms
- but everything here should apply on any other vendor if you replace the wording

- Feel free to interrupt at any time



INGEST & 
FUSION kFlow

kFlow

STORAGE & QUERY CLIENTS

STREAMING & 
AGGREGATION ACTION TRIGGERS

SOURCES

DATA

DATA

Kentik Platform



- UDP and TCP flow ingest
- (packet loss sensitive)

- BGP ingest for flow enrichment 
- (stability, NOCs don’t like flappy peerings)

- Hosts are DHCP’ed
- (no DHCP, hosts become unreachable)

- Outgoing HTTP requests
- (ie. actions or alerts to email/slack/pagerduty - need to be successful)

- Internal BGP must be stable - Hosts announce ingest IPs 
- (flaps mean ingest outages)

- Microservices, talking (mostly) over TCP/HTTP 
- (stable network or throughput will suffer)

Kentik is network sensitive



Story
- Our traditional setup is a Virtual Chassis stack
- We got a new 10-rack cage

- We need to be able to host more than one “cluster” of our product.
- Each “cluster” may have different security requirements.

- We plan to run kubernetes at some point
- We try to build redundancy everywhere
- We like to tinker with new shiny things :)



- RFC7938, “Use of BGP for Routing in Large-Scale Data Centers”
- Vendor-specific whitepapers, notes, terminology
- Other RFCs for more specific tech such as EVPN or VXLAN

- Different names, and implementations but (generally) the same idea: 
- Make L2 as small as possible: rack, server. That’s your “edge”
- Use L3 routers beyond you L2’s designated “edge”
- Use a L3 routing protocol such as BGP for dynamic routing
- Optionally use some overlay over that L3 to have LANs across your “edges”

IP fabric, leaf/spine ?



- Containment: A misbehaving (not entirely down) switch doesn’t affect the 
whole network

- Containment: Two different customers can be completely isolated
- Maintenance: Updates, debugging, config testing are easier
- No STP, no loops, no storms
- No network-wide floods
- No proprietary Virtual Chassis technologies and protocols
- Your network can now implement more internet-like features:

- Routing policies and filters to influence traffic
- MEDs, as-path prepends, localpref

Why



- At least two more devices are needed compared to a virtual chassis setup.
- Each network device has a control plane now

- LAN is now local to {host, rack} - no flat vlans
- Applications may need changes to function on an environment like that
- Added complexity: if LAN architectures are needed across LAN boundaries, overlays must be 

used

- More devices, more cabling
- More internet resources needed (IP addresses, AS numbers)

Why Not



Implementation: start with a drawing



Where to add redundancy?

How will your design (and applications) behave with:

- A host going dark?
- A rack going dark?
- An aggregation switch going dark?

It’s not an all-or-nothing stack-goes-dark scenario anymore...

Implementation: connected paths / redundancy



Where will your L2 boundaries be?

- Host
- P-t-P /31, /127 down to each host
- Each host is also a router, needs to have managed “routing” configuration
- Flexible, a service may move anywhere (VMs, k8s etc)

- Rack
- Allocate a subnet with a vlan and a default gw on the ToR (e.g. a /24, /64)
- Not much change on how hosts view the network

Think: how servers will be provisioned - do you need DHCP? SLAAC? VRRP?

Think: Do you need public IPv4 addressing?

Implementation: L2



Pick what suits you better:

- eBGP
- More ASNs and bgp configuration needed
- Multipath can be used
- Looks more WAN/DFZ/internet

- iBGP
- Full mesh, or Route Reflectors (make sure they’re placed redundantly!)
- Less traffic manipulation criteria
- Less configuration

Implementation: ebgp/ibgp?



- Equipment, cabling, optics
- Measure your bandwidth consumption on each topology level

- Congestion will happen in near-to-full links, take that into consideration
- 1 or 2 switch-routers per rack (is redundancy needed here?)
- 2-4 aggregation switches depending on the architecture and redundancy planned

- Networks
- IPv4 and IPv6 subnets sized to accommodate:

- Loopbacks
- P-t-P between network devices, and possibly also for hosts connected
- Not all of them need to belong in the same, contiguous network, but it helps
- Public networks?

Implementation: Resources Needed



- ASNs
- Private AS numbers to use for each router
- Go for 32-bit private ASNs!

- Human resources:
- Think how this change will fit your and your team’s existing tools and processes:

- Configuration
- Monitoring
- Debugging

Implementation: Resources Needed



Implementation: v(x)lans, networks?
- Depends on whether you will have lans or terminate /31s on hosts
- Depends on whether you will have customers, segregation

We had to be backwards compatible:

- 1 private LAN per rack
- With a default gateway and dhcp relay on the switch

- 1 public LAN per rack
- Certain hosts do outgoing requests to customers’ equipment

We plan to configure a vxlan to unite these public LANs at some point



You now have more than one devices to manage

- But, they’re easily groupable (e.g. leaf group or spine group)
- Prepare configs for first time provisioning
- Try to make policies as generic as possible to fit a whole group

- Use communities, route-masks, filters to control flow inside the policy

- (Ab)Use every config reduction feature your vendor supports:
- Templated/grouped configuration
- allow bgp connections from ip range
- Interface globs/masks/ranges
- Routing instances

Implementation: Automation



Implementation: Automation
- Consider embedding a bit of topology in your ASNs, IPv6 for quick debugging:

- 2001:db8:100::24 for rack 100
- 65232, 420000232 for rack 232
- Vxlan IDs based on customer id

- Easy(-ier than a VC) to emulate with virtual routers
- Automate all the things!

- If you don’t use any automation, it’s a good place to start
- Git + programmatic way to push and rollback policies = success
- No need to produce the whole router config on first try, build incrementally
- Make your target to have policies synced everywhere



Yes:

- Debugging is simpler
- Maintenance is simpler
- Spawning a new rack is easier
- Flexibility with hosts networking

Things to consider:

- Without automation, you’ll end up with different policies eventually
- More moving parts involved, need to monitor all of them
- Can be more expensive (short-term) to bootstrap

Was it worth it?



That’s all :)
Thanks!

Questions?


