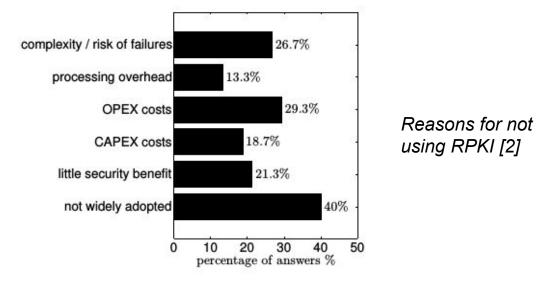

Neutralizing BGP Hijacking within a Minute (funded by *EPERCE* Community Projects 2017)

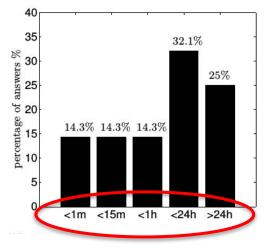
Vasileios Kotronis

(Joint work with: Pavlos Sermpezis, Petros Gigis, Dimitris Mavrommatis, Xenofontas Dimitropoulos, Alberto Dainotti, Alistair King, Lefteris Manassakis)


GRNOG 7, Athens, Greece, 6 July, 2018

How do people deal with hijacks today? \rightarrow **RPKI**

- X < 10% of prefixes covered by ROAs [1]
- X Why? \rightarrow limited adoption & costs/complexity [2]
- X Does not protect the network against all attack types



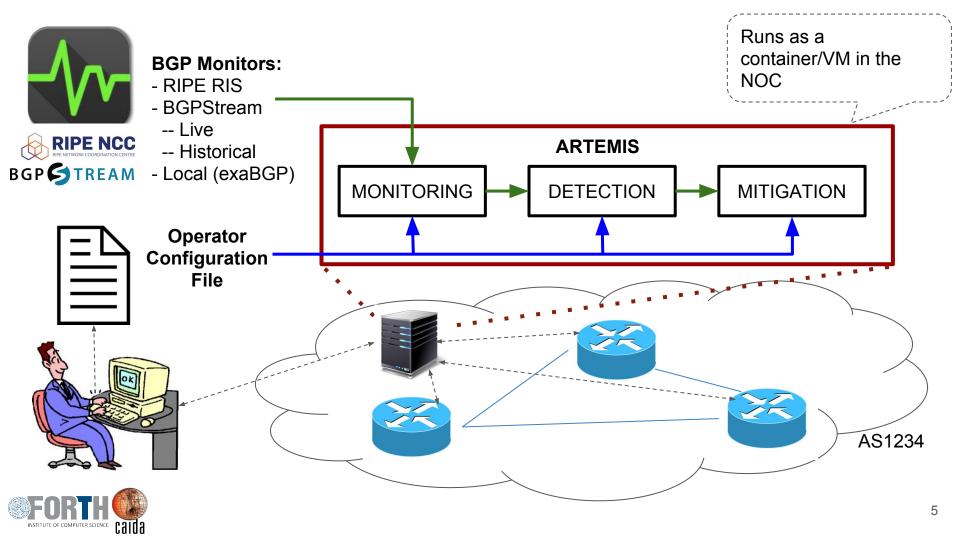
[1] NIST. RPKI Monitor <u>https://rpki-monitor.antd.nist.gov/</u>.July 2018

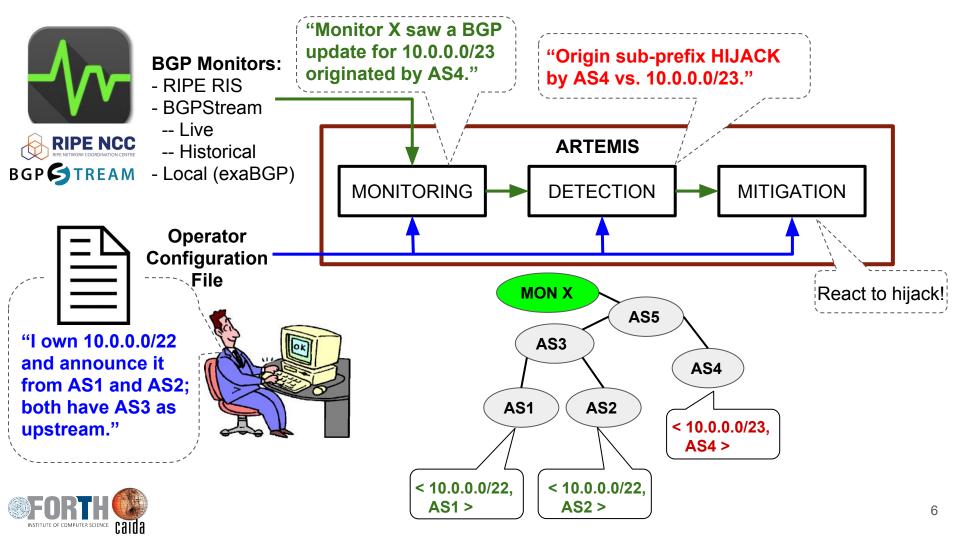
[2] P. Sermpezis, et. al., "A survey among Network Operators on BGP Prefix Hijacking", in ACM SIGCOMM CCR, Jan 2018.

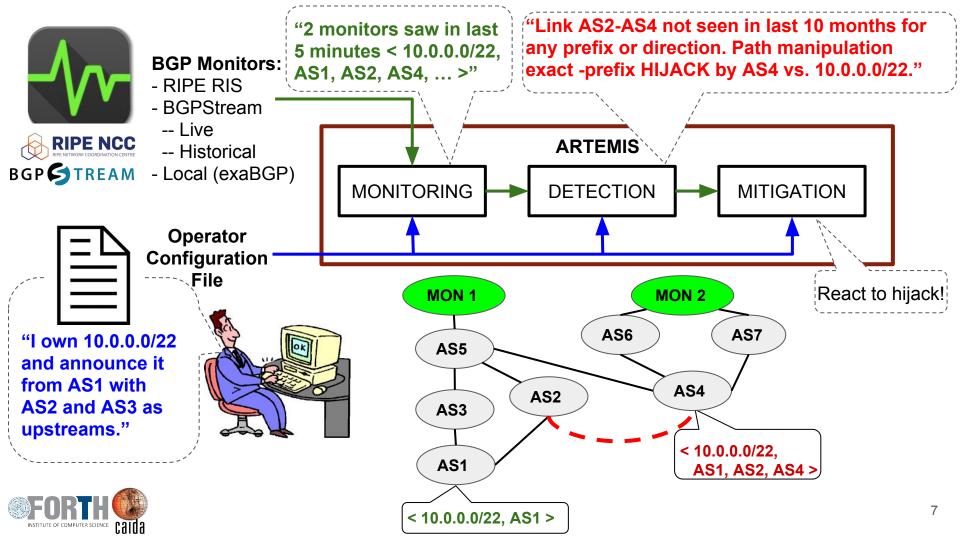
How do people deal with hijacks today? \rightarrow 3rd parties

- X Comprehensiveness: detect only simple attacks
- X Accuracy: lots of false positives (FP) & false negatives (FN)
- **X Speed**: manual verification & then manual mitigation
- X Privacy: need to share private info, routing policies, etc.

How much time an operational network was affected by a hijack [1]

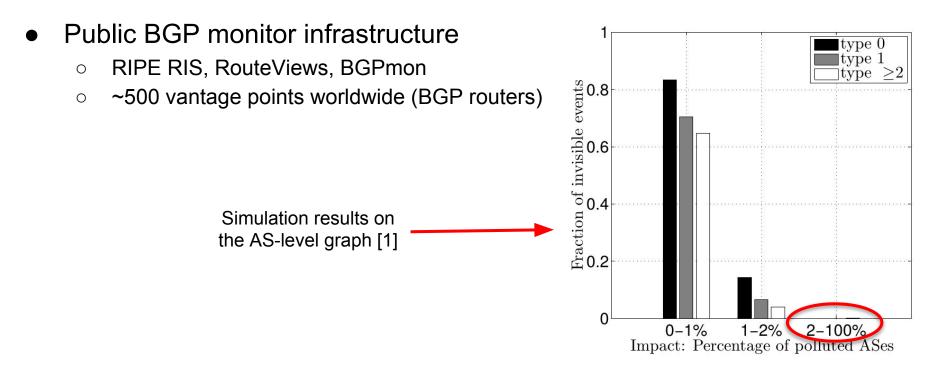


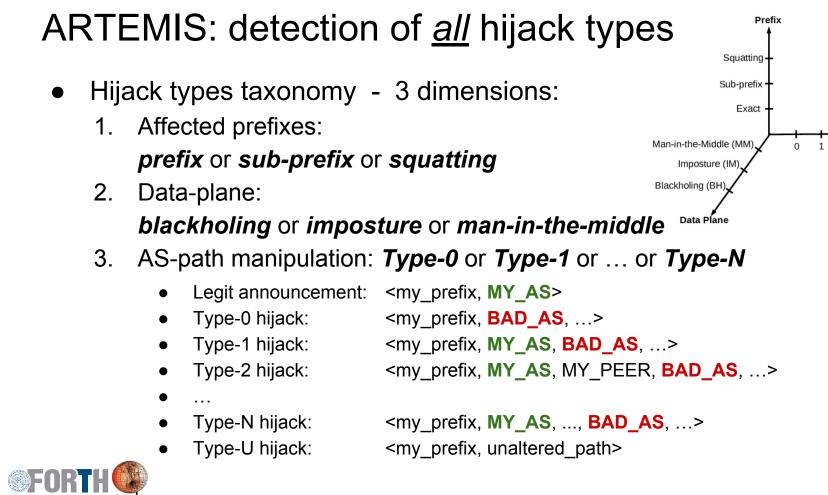

Our solution: ARTEMIS


- Operated in-house: no third parties
- Real-time Detection
- Automatic Mitigation
- **Comprehensive**: covers *all* hijack types
- Accurate: 0% FP, 0% FN for basic types;
 low tunable FP-FN trade-off for remaining types
- ✓ Fast: neutralizes (detect & mitigate) attacks in < 1 minute</p>
- Privacy preserving: no sensitive info shared
- ✓ Flexible: configurable mitigation per-prefix + per-hijack type

[1] ARTEMIS website <u>www.inspire.edu.gr/artemis/</u>

[2] P. Sermpezis et al., "<u>ARTEMIS: Neutralizing BGP Hijacking within a Minute</u>", under revision ACM/IEEE ToN, arXiv 1801.01085. [a [3] G. Chaviaras et al., "<u>ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking</u>", ACM SIGCOMM'16 demo.





ARTEMIS: visibility of all impactful hijacks

caida

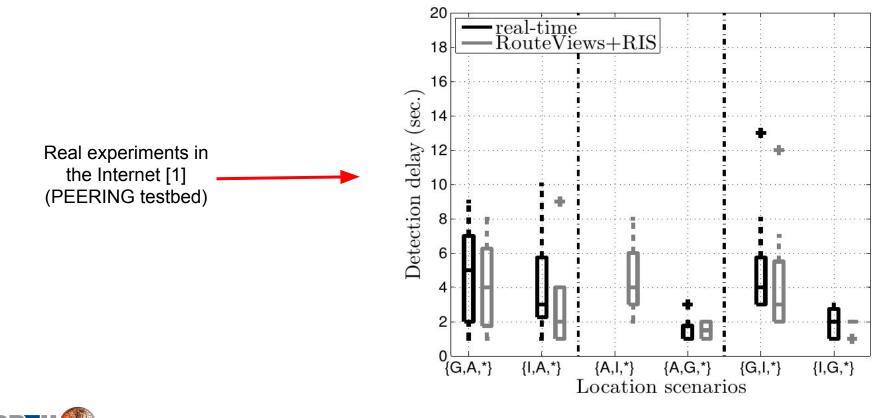
[1] P. Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute", under revision IEEE/ACM ToN, arXiv 1801.01085.

AS-PATH

ARTEMIS: detection of all hijack types

Class of	Hijacking A	ttack		-plane System	/Service	Data-plane S	System/Service	Hybrid System/Service			
Affected prefix	AS-PATH (Type)	Data plane	ARTEMIS	Cyclops (2008) 21	PHAS (2006) 36	iSpy (2008) 68	Zheng <i>et al.</i> (2007) 7 0	HEAP (2016) 57	Argus (2012) 60	Hu et al. (2007) [32]	
Sub	U	*	√	×	×	×	×	×	×	×	
Sub	0/1	BH	\checkmark	×	\checkmark	×	×	\checkmark	~	\checkmark	
Sub	0/1	IM	\checkmark	×	\checkmark	×	×	\checkmark	×	\checkmark	
Sub	0/1	MM	√	×	\checkmark	×	×	×	×	×	
Sub	≥ 2	BH	\checkmark	×	×	×	×	\checkmark	√	\checkmark	
Sub	≥ 2	IM	\checkmark	×	×	×	×	\checkmark	×	~	
Sub	≥ 2	MM	\checkmark	×	×	×	×	×	×	×	
Exact	0/1	BH	\checkmark	\checkmark	\checkmark	√ 	×	×	√	\checkmark	
Exact	0/1	IM	\checkmark	\checkmark	\checkmark	×	\checkmark	×	×	\checkmark	
Exact	0/1	MM	\checkmark	\checkmark	\checkmark	×	\checkmark	×	×	×	
Exact	≥ 2	BH	\checkmark	×	×	\checkmark	×	×	√	\checkmark	
Exact	≥ 2	IM	\checkmark	×	×	×	√	×	×	\checkmark	
Exact	≥ 2	MM	√	×	×	×	\checkmark	×	×	×	

TABLE 1: Comparison of BGP prefix hijacking detection systems/services w.r.t. ability to detect different classes of attacks.



ARTEMIS: *accurate* detection

Hija	cking Attack	8			ARTEMIS Detection		
Prefix	Prefix AS-PATH Data		False	False	Detection	Needed Local	Detection
	(Type)	Plane	Positives (FP) Negatives (F		Rule	Information	Approach
Sub-prefix	*	*	None	None	Config. vs BGP updates	Pfx.	Sec. 5.2
Squatting	*	*	None	None	Config. vs BGP updates	Pfx.	Sec. 5.2
Exact	0/1	*	None	None	Config. vs BGP updates	Pfx. + ASN	Sec. 5.3
						(+ neighbor ASN)	
Exact	≥ 2	*	< 0.3/day for	None	Past Data vs BGP updates	Pfx.+ Past AS links	Sec. 5.4
2			> 73% of ASes	2110.00	(bidirectional link)		Stage 1
Exact	≥ 2	*	None for 63% of ASes	< 4%	BGP updates	Pfx.	Sec. 5.4
			$(T_{s2} = 5min,$		(waiting interval,		Stage 2
			$th_{s2} > 1$ monitors)		bidirectional link)		0.5.0

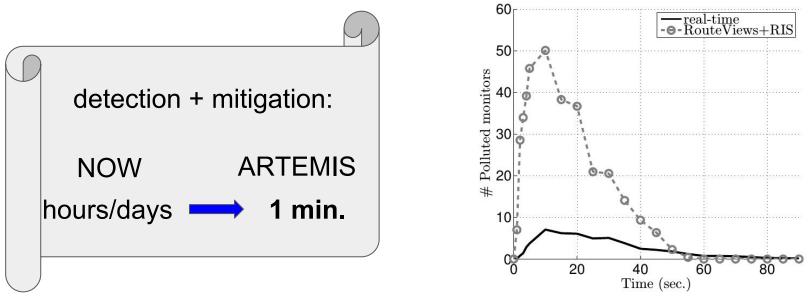
ARTEMIS: real-time monitoring, detection in 5 sec.!

caida

[1] P. Sermpezis et al., "ARTEMIS: Neutralizing BGP Hijacking within a Minute", under revision IEEE/ACM ToN, arXiv 1801.01085. 12

ARTEMIS: mitigation methods

- DIY: react by **de-aggregating** if you can
- Otherwise (e.g., /24 prefixes) **get help** from other ASes
 - \rightarrow announcement (MOAS) and tunneling from siblings or helper AS(es)


TABLE 7: Mean percentage of polluted ASes, when outsourcing BGP announcements to organizations providing DDoS protection services; these organizations can provide highly effective outsourced mitigation of BGP hijacking.

	without	top					
	outsourcing	ISPs	AK	CF	VE	IN	NE
Type0	50.0%	12.4%	2.4%	4.8%	5.0%	7.3%	11.0%
Type1	28.6%	8.2%	0.3%	0.8%	0.9%	2.3%	3.3%
Type2	16.9%	6.2%	0.2%	0.4%	0.4%	1.3%	1.1%
Type3	11.6%	4.5%	0.1%	0.4%	0.3%	1.1%	0.5%

ARTEMIS: automated & flexible mitigation

- Automated: triggered immediately upon detection
- Flexible: configure per prefix / hijack type / impact / etc.

The ARTEMIS tool: status

- Development funded by RIPE NCC Community Projects 2017
 - Tool presented at RIPE76 Routing WG (17 May 2018)
- Alpha (containerized) version soon available
- Modules:
 - GUI (web application)
 - Configuration (list of prefixes, ASNs, rules, etc.)
 - Monitoring: log BGP updates for all owned (sub-)prefixes
 - Detection
 - Working
 - Under development -
 - Mitigation
 - Under development: automated mitigation

Affected prefix	AS-PATH (Type)	Data plane	ARTEMIS
Sub	U	*	√
Sub	0/1	BH	√
Sub	0/1	IM	√
Sub	0/1	MM	√
Sub	≥ 2	BH	√
Sub	≥ 2	IM	√
Sub	≥ 2	MM	√
Exact	0/1	BH	√
Exact	0/1	IM	√
Exact	0/1	MM	\checkmark
Exact	≥ 2	BH	√
Exact	≥ 2	IM	√
Exact	≥ 2	MM	1

ARTEMIS configuration file

- Configure manually, react automatically
 - Define prefix, ASN, monitor groups
 - Declare ARTEMIS rules:

[group1] prefixes: my_prefixes origin_asns: my_asn, moas_asn neighbors: peer_65003,upstream_65002 mitigation: manual

- (Optionally) define mitigation parameters
- Future work: automated configuration
 - Extract from local routers
 - Extract from IRR (e.g., RADB, RPKI DBs)
 - Collect from RIPE RIS / RouteViews datasets

DISCLAIMER: The data used on this slide for hijacks are under verification, and are used to demonstrate how the UI looks.

ARTEMIS UI: Monitor Logs

ID	Prefix	Origin AS	Peer AS	AS Path	Service	Туре	Timestamp	↑Hijack ID	Handled
54	139.91.0.0/17	8522	37497	37497 2914 8522	bgpstream routeviews route- views.jinx	А	6/7/18, 3:43 PM	3	Yes
56	139.91.0.0/17	8522	37497	37497 2914 8522	bgpstream routeviews route- views.linx	A	6/7/18, 3:43 PM	3	Yes
58	139.91.0.0/17	8522	37497	37497 2914 8522	bgpstream routeviews route- views.napafrica	А	6/7/18, 3:43 PM	3	Yes
43	139.91.128.0/17	8522	37497	37497 2914 8522	RIPEris rrc19	A	6/7/18, 3:43 PM	2	Yes
55	139.91.128.0/17	8522	37497	37497 2914 8522	bgpstream routeviews route- views.jinx	А	6/7/18, 3:43 PM	2	Yes
57	139.91.128.0/17	8522	37497	37497 2914 8522	bgpstream routeviews route- views.linx	A	6/7/18, 3:43 PM	2	Yes
59	139.91.128.0/17	8522	37497	37497 2914 8522	bgpstream routeviews route- views.napafrica	A	6/7/18, 3:43 PM	2	Yes

DISCLAIMER: The data used on this slide for hijacks are under verification, and are used to demonstrate how the UI looks.

ARTEMIS UI: Hijack Logs

↑ID	Туре	Prefix	Hijack AS	CNum Peers Seen	CNum ASNs Infected	Time Started	Time Last Updated	Time Ended	Mit Pending	Mit Started	Mitigate	Resolved
7	1	139.91.128.0/17	174	1	1	6/26/18, 3:28 PM	6/26/18, 3:28 PM		False		Mitigate	Resolved
6	1	139.91.0.0/17	174	1	1	6/26/18, 3:28 PM	6/26/18, 3:28 PM		False		Mitigate	Resolved
5	1	139.91.128.0/17	1299	1	1	6/19/18, 2:43 PM	6/19/18, 2:43 PM		False		Mitigate	Resolved
4	1	139.91.0.0/17	1299	1	1	6/19/18, 2:43 PM	6/19/18, 2:43 PM		False		Mitigate	Resolved
3	1	139.91.0.0/17	2914	1	1	6/7/18, 3:43 PM	6/26/18, 7:30 PM		False		Mitigate	Resolved
2	1	139.91.128.0/17	2914	1	1	6/7/18, 3:43 PM	6/26/18, 7:30 PM		False		Mitigate	Resolved

What's next?

- Testing ARTEMIS as a tool in an operational environment
- Improved UI
- Automated configuration
- Advanced detection + mitigation
- Using data-plane measurements for
 - automated verification of hijack events
 - detection of events with limited regional impact
- Cooperation with CAIDA on Internet Observatory
 - centralized service for detection of BGP hijacks and anomalies (including MitM)

What do we need from you?

- Feedback:
 - Answer our questionnaire at: <u>http://inspire.edu.gr/artemis/qa</u>
 - Try current test version at: <u>http://inspire.edu.gr/artemis/demo</u> (credentials: test / ripe76_artemis)
 - Advice on integrating ARTEMIS in operational environments
- Collaboration for testing ARTEMIS (e.g., configuration)
- Contact us:
 - Come and talk to us during GRNOG7 (Vassilis, Lefteris)
 - Mail us at: {vkotronis, sermpezis, leftman, fontas}@ics.forth.gr, {alberto, alistair}@caida.org
 - Visit the ARTEMIS website <u>http://www.inspire.edu.gr/artemis/</u>

Thank you! Questions? www.inspire.edu.gr/artemis

- Questionnaire: <u>http://inspire.edu.gr/artemis/qa</u>
- Toy version for testing:

http://inspire.edu.gr/artemis/demo/ (creds: test/ripe76_artemis)

- ARTEMIS: Neutralizing BGP Hijacking within a Minute under revision in ACM/IEEE ToN, <u>https://arxiv.org/abs/1801.01085</u>
- A Survey among Network Operators on BGP Prefix Hijacking in ACM SIGCOMM CCR, Jan' 18, <u>https://arxiv.org/abs/1801.02918</u>
- ARTEMIS: Real-Time Detection and Automatic Mitigation for BGP Prefix Hijacking (demo) in ACM SIGCOMM 2016,

https://arxiv.org/abs/1702.05349

ecurity

funded by:

BACKUP

BGP prefix hijacking is a critical threat

 \rightarrow to your organization & customers & peers

- **Outages** in the Internet cause losses of millions of \$\$\$
- Interception of bitcoins, credit card transactions, passwords, ...
- **Bad reputation** for hijacked networks: security, service reliability

...only in 2017: 5,304 hijacks, with 3,106 organizations as victims [1]

BACKUP

Threat Model \rightarrow the hijacker:

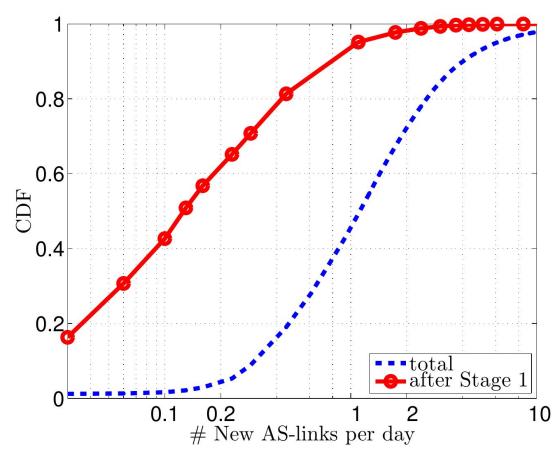
- controls a single AS and its edge routers
- has full control of the control plane and data plane within its own AS
- can arbitrarily manipulate the:
 - BGP messages that it sends to its neighboring ASes (control plane)
 - traffic that crosses its network (data plane)
- has otherwise no control over BGP messages and traffic exchanged between two other ASes.

 \rightarrow Extensions (future work): multiple ASes controlled by a single hijacker

Type-N, N≥2, hijacks: Stage 1

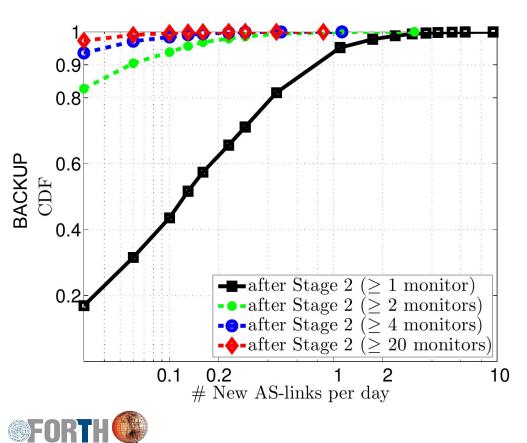
- Triggered upon a BGP update (for a monitored prefix) whose AS-PATH contains a N-hop AS-link (N ≥ 2) that is not included in the previously verified AS-links list
- Legitimate if this link has been observed in the opposite direction in the AS-links list from monitors and local BGP routers
 - (10 months history) (and there appears consistently at least 1 AS on the left of the link*)
- Example with fake link directly attached to hijacker:

<my_prefix, MY_AS, MY_PEER, BAD_AS, ...> attack announcement


<any_prefix, ..., **BAD_AS**, MY_PEER, ..., **BAD_AS**, ...> pre-attack fails (discard loops)

<any_prefix, ..., **BAD_AS**, MY_PEER, ..., **2nd_BAD_AS**, ...> pre-attack succeeds (beyond adopted threat model)

* Works also when hijacker is hiding behind a legitimate upstream provider!


Type-N, N≥2, hijacks: Stage 1

Type-N, N≥2, hijacks: Stage 2 w/ FN of small impact

- Stage 2
 - Wait 5 minutes
 - Recheck tables on monitors + local routers
 - Optional: decisions based on observable impact

(e.g., number of monitors involved)

Note: What we do not cover as hijacks \rightarrow route leaks

- Not actual hijacks in the classic threat model
 - All links involved in the announced paths are valid!
- Fall in the context of "policy violations", e.g.,
 - What if Google decided to be a Tier-1 global transit network for one hour?
 - What if your friendly IXP peer decided to act as your upstream?
- Detecting them requires detailed knowledge of in-path policies
 - These are not publicly available
 - $\circ \quad \text{Existing datasets} \rightarrow \text{would yield high numbers of FP}$
 - 30% of observed routes are not consistent with available routing policy data [1]
 - Ongoing work! (beyond "good filtering")

